Guo Zhe, Zhao Wenzhao, Qin Binjie. Poisson Noise Removal Using Patch-order Resampling PCA Algorithm[J]. Chinese Journal of Medical Instrumentation, 2016, 40(6): 403-406. DOI: 10.3969/j.issn.1671-7104.2016.06.003
      Citation: Guo Zhe, Zhao Wenzhao, Qin Binjie. Poisson Noise Removal Using Patch-order Resampling PCA Algorithm[J]. Chinese Journal of Medical Instrumentation, 2016, 40(6): 403-406. DOI: 10.3969/j.issn.1671-7104.2016.06.003

      Poisson Noise Removal Using Patch-order Resampling PCA Algorithm

      • The problem of Poisson denoising is common in various photon-limited imaging applications, especially in low-light imaging, astronomy and nuclear medical applications. Due to the small sample problem and the related insufficient self-similarity between patches of whole image, many denoising algorithms cannot obtain the favorable denoising performance. We propose patch-order resampling PCA algorithm for Poisson noise reduction. Firstly, we use the patchordered operations to sort the extracted image patches and exploit the bootstrap resampling method to resample the different blocks of spectral images to obtain more data matrix of image samples. Then, we select the patches with largest weights corresponding to the vectors of image samples data matrix as the most similar patches. Finally, we use principal component analysis algorithm for processing the image to obtain the final denoised image. Experiments results show that the proposed method achieves excellent Poisson noise removal performance in the photon-limited images with small sample problems.
      • loading

      Catalog

        Turn off MathJax
        Article Contents

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return