Finite Element Simulation Analysis of a Nickel-Titanium Alloy Patent Foramen Ovale Occluder
-
Graphical Abstract
-
Abstract
In this paper, a preliminary stress/strain analysis of the design structure of a nickel-titanium alloy patent foramen ovale occluder is conducted with the finite element simulation analysis method. In the analysis, solid structure modeling is carried out on three different specifications of domestic patent foramen ovale occluders. Referring to the test method of fatigue performance in inspection standard YY/T 1553—2017, an initial installation deformation is applied to the model, and then the fatigue displacement of 2 mm is applied to the sample to make the model fatigue deformation. The fatigue safety factors of each type of occluder are obtained by strain simulation analysis. The results indicate that the minimum fatigue safety factors of the three specifications of domestic patent foramen ovale occluders are 2.09, 2.35 and 2.06 respectively, which all meet the design of fatigue safety factor greater than 1. Among them, 1818 and 3030 specifications of patent foramen ovale occluders have close values in minimum fatigue safety factors, and both are lower than that of 1825 model. Therefore, it is recommended to carry out physical fatigue tests on both 1818 and 3030 specifications to further verify the fatigue performance of the products.
-
-