• Medline、Scopus
  • Chinese S&T Journal Citation Reports (Natural Science, Core Edition)
SHEN Zhihang, ZHANG Ling, SU Yuehong, XING Hongwei, LI Bin. Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot[J]. Chinese Journal of Medical Instrumentation, 2024, 48(4): 385-391. DOI: 10.12455/j.issn.1671-7104.230642
Citation: SHEN Zhihang, ZHANG Ling, SU Yuehong, XING Hongwei, LI Bin. Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot[J]. Chinese Journal of Medical Instrumentation, 2024, 48(4): 385-391. DOI: 10.12455/j.issn.1671-7104.230642

Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot

More Information
  • Received Date: November 14, 2023
  • Available Online: August 06, 2024
  • The control strategy of rehabilitation robots should not only adapt to patients with different levels of motor function but also encourage patients to participate voluntarily in rehabilitation training. However, existing control strategies usually consider only one of these aspects. This study proposes a voluntary and adaptive control strategy that solves both questions. Firstly, the controller switched to the corresponding working modes (including challenge, free, assistant, and robot-dominant modes) based on the trajectory tracking error of human-robot cooperative movement. To encourage patient participation, a musculoskeletal model was used to estimate the patient’s active torque. The robot’s output torque was designed as the product of the active torque and a coefficient, with the coefficient adaptively changing according to the working mode. Experiments were conducted on two healthy subjects and four hemiplegic patients using an ankle rehabilitation robot. The results showed that this controller not only provided adaptive the robot’s output torque based on the movement performance of patients but also encouraged patients to complete movement tasks themselves. Therefore, the control strategy has high application value in the field of rehabilitation.

  • [1]
    GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the global burden of disease study 2016[J]. Lancet Neurol, 2019, 18(5): 439-458. doi: 10.1016/S1474-4422(19)30034-1
    [2]
    司惠芳, 梁岚萍, 刘向真, 等. 脑卒中肢体功能康复现状综述[J]. 中华护理杂志, 2004(7): 58-61. doi: 10.3321/j.issn:0254-1769.2004.07.027
    [3]
    侯增广, 赵新刚, 程龙, 等. 康复机器人与智能辅助系统的研究进展[J]. 自动化学报, 2016, 42(12): 1765-1779.
    [4]
    杨启志, 曹电锋, 赵金海. 上肢康复机器人研究现状的分析[J]. 机器人, 2013, 35(5): 630-640.
    [5]
    昌赢, 孟青云, 喻洪流. 手部康复机器人技术研究进展[J]. 北京生物医学工程, 2018, 37(6): 650-656. doi: 10.3969/j.issn.1002-3208.2018.06.015
    [6]
    魏聪惠, 郭珅, 马凤领, 等. 下肢康复机器人康复实践的研究进展[J]. 山东医药, 2023, 63(10): 95-98. doi: 10.3969/j.issn.1002-266X.2023.10.024
    [7]
    高承一, 刘芬, 姜海波. 下肢康复机器人机构研究现状及临床应用初探[J]. 中国医疗器械杂志, 2024, 48(1): 30-37. doi: 10.3969/j.issn.1671-7104.230135
    [8]
    蒋硕, 张克, 陈一依, 等. 可穿戴康复助行机器人安全性有效性评价要点分析[J]. 中国医疗器械杂志, 2023, 47(2): 207-210. doi: 10.3969/j.issn.1671-7104.2023.02.018
    [9]
    尹帅, 石斌, 孙逸凡, 等. 轻量化自适应柔性踝关节康复机器人设计与评估[J]. 机械工程学报, 2022, 58(9): 10-20.
    [10]
    蒋金金, 郭书铭, 侯智. 基于模糊PID控制的脚踏式下肢康复器械被动训练控制方法研究[J]. 现代信息科技, 2023, 7(12): 162-165.
    [11]
    颜小润, 缪羽, 王鸿泰, 等. 基于阻抗模型的骨科康复辅助护理机器人控制系统[J]. 自动化与仪器仪表, 2023(4): 80-84.
    [12]
    屠尧, 朱爱斌, 宋纪元, 等. 下肢外骨骼康复机器人人机交互力自适应导纳控制[J]. 西安交通大学学报, 2019, 53(6): 9-16. doi: 10.7652/xjtuxb201906002
    [13]
    曹福成, 邢笑雪, 李元春, 等. 下肢康复机器人轨迹自适应滑模阻抗控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
    [14]
    梁文渊, 毕胜. 主动康复训练机器人的感知交互与控制策略[J]. 科技导报, 2019, 37(22): 26-36.
    [15]
    明东, 蒋晟龙, 王忠鹏, 等. 基于人机信息交互的助行外骨骼机器人技术进展[J]. 自动化学报, 2017, 43(7): 1089-1100.
    [16]
    李晓奇. 基于表面肌电信号的膝关节康复意图识别及机器人控制[D]. 哈尔滨: 哈尔滨工业大学, 2022.
    [17]
    方又方, 喻洪流, 官龙, 等. 基于肌电触发的上肢康复训练机器人的实现[J]. 上海理工大学学报, 2015, 37(4): 355-361.
    [18]
    杜妍辰, 孙洁, 汪晓铭, 等. 基于肌电信号的人体下肢运动意图映射研究进展[J]. 上海理工大学学报, 2023, 45(2): 128-136,170.
    [19]
    SHAO Q, BASSETT D N, MANAL K, et al. An EMG-driven model to estimate muscle forces and joint moments in stroke patients[J]. Comput Biol Med, 2009, 39(12): 1083-1088. doi: 10.1016/j.compbiomed.2009.09.002
    [20]
    AO D, SONG R, GAO J W. Movement performance of human-robot cooperation control based on EMG-driven Hill-type and proportional models for an ankle power-assist exoskeleton robot[J]. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(8): 1125-1134. doi: 10.1109/TNSRE.2016.2583464
    [21]
    ZHUANG Y, YAO S, MA C, et al. Admittance control based on EMG-driven musculoskeletal model improves the human–robot synchronization[J]. IEEE Trans Industr Informat, 2019,15(2): 1211-1218.
    [22]
    WU Q, WANG X, CHEN B, et al. Development of a minimal-intervention-based admittance control strategy for upper extremity rehabilitation exoskeleton[J]. IEEE Trans Syst Man Cybernet Syst, 2018, 48(6): 1005-1016.
    [23]
    CAULCRICK C, HUO W, FRANCO E, et al. Model predictive control for human-centred lower limb robotic assistance[J]. IEEE Trans Med Robot Bionics, 2021, 3(4): 980-991. doi: 10.1109/TMRB.2021.3105141
    [24]
    ROWE J B, CHAN V, INGEMANSON M L, et al. Robotic assistance for training finger movement using a hebbian model: a randomized controlled trial[J]. Neurorehabil Neural Repair, 2017, 31(8): 769-780. doi: 10.1177/1545968317721975
    [25]
    LUO L C, PENG L, WANG C, et al. A greedy assist-as-needed controller for upper limb rehabilitation[J]. IEEE Trans Neural Netw Learn Syst, 2019, 30(11): 3433-3443. doi: 10.1109/TNNLS.2019.2892157

Catalog

    Article views (86) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return