中国医疗器械杂志
研究与论著

文章编号: 1671-7104(2023)03-0258-06

基于BP神经网络和支持向量机的 心房颤动分类方法研究

- 【作 者】刘晨沁^{1,2},林高藏^{1,2},周晶晶^{1,2},叶继伦^{1,2,3,4},张旭^{1,2,3}
 1 深圳大学 医学部 生物医学工程学院,深圳市,518060
 2 深圳市生物医学工程重点实验室,深圳市,518060
 3 广东省生物医学信息检测与超声成像重点实验室,深圳市,518060
 4 广东省宝莱特创新研究院,珠海市,519080
- 【摘 要】心房颤动是一种常见的心律失常,其诊断受到多种因素的干扰,为在诊断上达到可应用性,使房颤自动分析水平提升至专家水平,对房颤的自动检测至关重要。该研究提出了一种基于BP神经网络和支持向量机的房颤自动检测算法。将MIT-BIH房颤数据库中的心电信号(ECG)片段分别分为10、32、64、128个心搏为一组,计算洛伦兹值、香农熵、K-S检验值和指数移动平均值这4种特征参数,将这4种参数作为SVM和BP神经网络的输入,进行分类和测试,以MIT-BIH房颤数据库中专家给定的标签作为参考输出。其中,使用MIT-BIH房颤数据库中用前18例数据作为训练集,后7例数据作为测试集。结果表明,在10个心搏分类上得到了92%的准确率,在后3种分类上得到了98%的准确率,灵敏度和特异性均在97.7%以上,具有一定的可应用性,后续将进一步在临床心电数据中进行验证和改进。
- 【关 键 词】 洛伦兹值; 香农熵; K-S检验值; 指数移动平均值; BP神经网络
- 【中图分类号】 R318
- 【文献标志码】A

doi: 10.3969/j.issn.1671-7104.2023.03.005

An Atrial Fibrillation Classification Method Study Based on BP Neural Network and SVM

- Writers J LIU Chenqin^{1,2}, LIN Gaozang^{1,2}, ZHOU Jingjing^{1,2}, YE Jilun^{1,2,3,4}, ZHANG Xu^{1,2,3}
 1 School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060
 2 Shenzhen Key Lab for Biomedical Engineering, Shenzhen, 518060
 3 Guangdong Key Lab for Biomedical Measurements and Ultrasound Imaging, Shenzhen, 518060
 4 Guangdong BIOLIGHT Innovation Research Institute, Zhuhai, 519080
- [Abstract] Atrial fibrillation is a common arrhythmia, and its diagnosis is interfered by many factors. In order to achieve applicability in diagnosis and improve the level of automatic analysis of atrial fibrillation to the level of experts, the automatic detection of atrial fibrillation is very important. This study proposes an automatic detection algorithm for atrial fibrillation based on BP neural network (back propagation network) and support vector machine (SVM). The electrocardiogram (ECG) segments in the MIT-BIH atrial fibrillation database are divided into 10, 32, 64, and 128 heartbeats, respectively, and the Lorentz value, Shannon entropy, K-S test value and exponential moving average value are calculated. These four characteristic parameters are used as the input of SVM and BP neural network for classification and testing, and the label given by experts in the MIT-BIH atrial fibrillation database, the first 18 cases of data are used as the training set, and the last 7 cases of data are used as the test set. The results show that the accuracy rate of 92% is obtained in the classification of 10 heartbeats, and the accuracy rate of 98% is obtained in the latter three categories. The sensitivity and specificity are both above 97.7%, which has certain applicability. Further validation and improvement in clinical ECG data will be done in next study.

[Key words] Lorentz value, Shannon entropy, K-S test value, exponential moving average value, BP neural network

收稿日期: 2022-06-07

基金项目:深圳市科创委重点项目(20210713091811038);珠海市政府人才基金(2120004000207)

作者简介: 刘晨沁, E-mail: lcqnanchang@163.com

通信作者: 张旭, E-mail: xuzhang@szu.edu.cn

研究与论著

(J) (Z,

0 引言

心房颤动(atrial fibrillation, AF)是一种以心 房不协调活动而导致心房机械功能恶化为特征的快 速心律失常,几乎见于所有的器质性与非器质性心 脏病,是心功能不全、脑卒中等疾病的重要危险因 素^[1]。通常情况下,房颤的早期阶段表现为阵发性 和无症状性,若不及时诊断,很有可能发展为持续 性或永久性房颤,增加复律难度^[2-3]。

目前国内外对于房颤的研究主要分为三类,一 是基于时域的房颤分析;二是基于频域的房颤分 析;三是基于时域与频域相结合的房颤分析。我们 提出基于BP神经网络(back propagation network) 和支持向量机(support vector machine, SVM)的 房颤分类方法,根据房颤信号RR间期不规则的特 征,提取了洛伦兹值、香农熵、K-S检验值和指数 移动平均值这4种参数,分析10、32、64和128个心 搏在SVM和BP神经网络下的房颤分类特性,从灵 敏度、特异性和准确率3个方面对本方法的性能进 行评估。

1 实验数据

目前有3个得到国际认可的心电数据库可以被 用作临床标准,分别是由美国麻省理工学院提供的 MIT-BIH心律失常数据库、美国心脏学会的AHA数 据库以及欧洲ST-T心电数据库。其中MIT-BIH数据 库拥有大量数据并有权威专家对其进行了详细的 注释和标记,在心律失常分类和临床研究中应用 最为广泛。该研究选用MIT-BIH房颤数据库(atrial fibrillation database, afdb)中的数据作为实验数据测 试来源,数据库包含25例房颤受试者的长期心电信 号记录,每条心电信号记录时间长度为10 h。

2 方法

本研究使用的算法先将信号进行预处理,然后 提取房颤信号的特征,并将4种特征参数分别输入 BP神经网络和SVM,得到分类结果,0代表非房颤 信号,1代表房颤信号,流程如图1所示。

2.1 预处理

将afdb数据库中前18条ECG信号记录(记录 号较小的18条,其中00735和03665不可用)作为 训练集训练分类模型,后7条ECG信号记录(记录 号较大的7条)作为测试集进行分类模型准确性的 检验。在对ECG 信号的RR间期进行分段与实际类 别标注时,分别取 10、32、64 和 128 个心搏为一 组^[4],分别得到112 773、35 251、17 629、9 542个 样本。对于这些 RR 间期段,若房颤心搏数量超过 该组总心搏数量的一半时,标注为房颤段,否则标 注为非房颤段^[5]。

图1 心电房颤信号分类流程 Fig.1 Flow chart of ECG atrial fibrillation classification

2.2 特征参数提取

本研究提取了 RR 间期的4个特征值参数: AFEvidence(洛伦兹值)、Shannon Entropy(香农熵)、 Kolmogorov-Smirnov(K-S检验值)和Exponential moving average(指数移动平均值)。

2.2.1 AFEvidence^[6]

AFEvidence是一种房颤检测器,用于检测正 常和房颤节奏的分类,该研究基于δRR间期的洛 伦兹图计算参数来识别房颤,主要提取参数为 AFEvidence值。

δRR间期的洛伦兹图描述了 $V_{\delta RR}(i-1)$ 和 $V_{\delta RR}(i)$ 的关系,编码了3个相邻的RR区间变化方向上的不相关性质。根据一段时间内 $V_{\delta RR}(i)$ 、 $V_{\delta RR}(i-1)$ 值画出二维直方图,如图2所示,得到房颤期间 RR区间序列的特征符号。其中,δRR间期定义为 $V_{\delta RR}(i)=V_{RR}(i)-V_{RR}(i-1)$,是对不规则性的度量。

研究与论著

J. (?,

图2中不同分段对应的RR区间序列如表1所示。其中,S-M-L表示短RR间期跟着中长RR间期 再跟着一个长RR间期,其他类似。例如,在第1 段和第9段,都是短RR间期和长RR间期更迭。当 $|V_{\delta RR}(i-1)| \neq |V_{\delta RR}(i)|$ 时,段1被填充;当 $V_{\delta RR}(i-1) \cong$ $-V_{\delta RR}(i)$ 时,段9被填充。NSRmask是段0的半径, 其值为80 ms,段5、段8、段9和段12的宽度与段0 的直径相同。

> 表1 洛伦兹图对应分段表 Tab.1 Lorentz diagram corresponding segment table

片段	3个RR间期长度	$V_{\delta m R m R}$
0	SSS/LLL	任意RR间期 <nsrmask< td=""></nsrmask<>
1	S-L-S	$ V_{\delta RR}(i-1) \neq V_{\delta RR}(i) $
2	L-M-S	$ V_{\delta RR}(i-1) \neq V_{\delta RR}(i) $
3	L-S-L	$ V_{\delta RR}(i-1) \neq V_{\delta RR}(i) $
4	S-M-L	$ V_{\delta RR}(i-1) \neq V_{\delta RR}(i) $
5	L-L-S	任意RR间期 <nsrmask< td=""></nsrmask<>
6	L-S-S	任意RR间期 <nsrmask< td=""></nsrmask<>
7	S-S-L	任意RR间期 <nsrmask< td=""></nsrmask<>
8	S-L-L	任意RR间期 <nsrmask< td=""></nsrmask<>
9	S-L-S	$V_{\delta RR}(i-1) \cong -V_{\delta RR}(i)$
10	L-M-S	$V_{\delta RR}(i-1) \cong V_{\delta RR}(i)$
11	L-S-L	$V_{\delta RR}(i-1) \cong -V_{\delta RR}(i)$
12	S-M-L	$V_{\delta RR}(i-1) \cong V_{\delta RR}(i)$

图3和图4是用两分钟的数据画的洛伦兹图, 洛伦茨扩展从-600 ms到+600 ms。正常窦性心律 (normal sinus rhythm, NSR),即图2的二维直方 图0段内的值主要如图3所示填充,而房颤时,所有 段内的值均如图4所示填充,房颤期间的分布密度 随潜在周期的长短而变化。

房颤检测器的开发是通过设计指标来实现的, 这些指标将有关模式的信息编码到二维直方图中, 通过T分钟填充的V_{&RR}(*i*)和V_{&RR}(*i*-1)来计算,T为自 然数,具体计算式为:

$$V_{\text{IrregularityEvidence}} = \sum_{n=1}^{12} V_{\text{BinCount}n}$$
(1)

$$V_{\text{PACEvidence}} = \sum_{n=1}^{4} (V_{\text{PointCount}n} - V_{\text{BinCount}n}) + \sum_{n=5,6,10} (V_{\text{PointCount}n} - V_{\text{BinCount}n}) + \sum_{n=7,8,12} (V_{\text{PointCount}n} - V_{\text{BinCount}n})$$
(2)

 $V_{\text{AFEvidence}} = V_{\text{IrregularityEvidence}} - V_{\text{OriginCount}} - 2 \times V_{\text{PACEvidence}}$ (3)

其中, $V_{\text{IrregularityEvidence}}$ 测量星系团分布的稀疏性, 房颤时为高值, NSR时为低值; $V_{\text{PACEvidence}}$ 测量了星 系团的分布方向; $V_{\text{PointCountn}}$ 计算了在段n中{ $V_{\delta RR}(i)$, $V_{\delta RR}(i-1)$ }的个数; $V_{\text{BinCountn}}$ 统计了直方图第n段 的非空bin数量; $V_{\text{OriginCount}}$ 是{ $V_{\delta RR}(i)$, $V_{\delta RR}(i-1)$ }中 包含原点的值; $V_{\text{AFEvidence}}$ 值用来判断是否为房颤 信号。

2.2.2 香农熵

熵的概念最早出现在热力学中,是表示能量 在空间分布的均匀程度的量。熵越大,表示这个 空间的能量分布越均匀^[7]。用香农熵(Shannon Entropy)测量心跳的不规则性,已广泛应用于房 颤检测领域。

当心房颤动发生时,信号的RR间期受其影响 发生变化,相较正常心电信号而言,其RR间期无规 则,RR间期分布的不确定性增大,其香农熵也会比 正常信号大。利用这一特性,计算信号的RR间期分 布香农熵,并以此区分正常信号与房颤信号。

为了计算RR时间序列的香农熵,首先构造考虑片段的直方图^[8]。将每段中RR值分类到等距的

直方图中,分类后每个片段的概率分布计算为该段 中的节拍数除以片段中的节拍总数,即

$$P(i) = \frac{N_{\text{bin}}(i)}{l} \tag{4}$$

式中: N_{bin}(*i*)是第*i*个片段中的节拍数,*l*是片段和的节拍总数,将处理后的RR段分类放置在30个片段中,最终香农熵计算如下:

$$V_{\rm SE} = -\sum_{i=1}^{30} P(i) \frac{\log_2 P(i)}{\log_2 30}$$
(5)

2.2.3 K-S检验值

K-S检验(Kolmogorov-Smirnov检验)是一种 基于累积分布函数的拟合优度检验法^[9]。K-S检验通 过测量两个累积概率分布的绝对差D的最大值来判 断两个分布是否不同。设S₁(x)、S₂(x)表示两个样本观 察值的累积概率分布函数,则双尾检验统计量可表 示为:

$$D=\max|S_1(x)-S_2(x)| \tag{6}$$

D的一个观察值的显著性水平见式(7):

$$L_{\text{prob}} = Q_{ks}(\lambda) = 2 \sum_{j=1}^{N_{e}} (-1)^{j-1} e^{-2j^{2}} \lambda^{2}$$
(7)

其中:

$$\lambda = \left[\sqrt{N_{\rm e}} + 0.12 + \frac{0.11}{\sqrt{N_{\rm e}}} \right] \times D \tag{8}$$

N。为有效数据点个数,由以下公式得到:

$$N_{\rm e} = \frac{N_1 \times N_2}{N_1 + N_2} \tag{9}$$

式中: $j=1,2,...,N_{e}$, N_{1} 、 N_{2} 分别为两个分布的数据点个数。一般 N_{e} 越大,K-S检验越准确,当 $N_{e} \ge 4$ 时,其检验性水平基本能满足精度要求^[9]。

采用基于RR间期比(即*V*_{RR}(*i*)/*V*_{RR}(*i*-1),记 为RRr)的分布检验方法进行房颤检测。RRr是以 "1"为基准线上下波动的序列,与δRR间期的性 质类似,不同点在于突出了长间期短间期的比值。 因此,分布检验是带有倾向性的,即突出了分布中 间偏右的部分,保证了检验在分布中间灵敏度的同 时,放大右端分布,从而增强检验在右端部分的灵 敏度。图5显示了标准房颤分布的累积概率分布与 测试数据分布的比较示例^[10]。

进一步地,为判断序列分布与房颤标准分布是 否一致,采用显著性检验方法,最终获得显著性水 平:概率(*D*>观察值),记为*V*_{prob}。若*V*_{prob}小于某 一阈值,则视两个分布存在显著差异,即该RRr序 列属非房颤分布;反之,则视该序列为房颤分布, 并作进一步处理^[11]。

2.2.4 指数移动平均值^[12]

指数移动平均 (exponential moving average, EMA) 值可以判断事物发展的趋向,常用于判断 序列的变动趋势^[13],该方法首先计算RR间期, 将当前RR间期与前一个RR间期相比得到第一比 率,如式(10)所示。将当前RR间期与第二先前的 RR间期相比得到第二比率,如式(11)所示。当任 一比率等于或超过有效阈值*T*_{effective}时,该比率的 指数移动平均值将按式(12)更新,否则,按式(13) 更新。然后计算两个指数移动平均值的组合值 *V*_{Dev'},如式(15)所示,最后比较*V*_{Dev'}和触发房颤阈 值,如果大于value1则为房颤,小于value2则重置 并继续临测,value1、value2均小于0.1。

$$V_{\delta RRI}(n) = \max\left[\frac{V_{RR}(n)}{V_{RR}(n-1)}, \frac{V_{RR}(n-1)}{V_{RR}(n)}\right]$$
(10)

$$V_{\delta RR2}(n) = \max\left[\frac{V_{RR}(n)}{V_{RR}(n-2)}, \frac{V_{RR}(n-2)}{V_{RR}(n)}\right]$$
(11)

$$V_{\text{Devx}}(n) = V_{\text{Devx}}(n-1) - a \tag{12}$$

式中: V_{Devx} 为当前RR间期移动平均值,a为补偿因子。

$$\frac{V_{\text{Devx}}(n) = k \times V_{\text{Devx}}(n-1) +}{(1-k) \times (V_{\text{dRRx}}(n)-1)^2}$$
(13)

式中: *k*是移动平均的长度, *N*是RR间期个数, *k*值 计算如下:

$$k=1-\frac{1}{N} \tag{14}$$

$$V_{\rm Dev'} = V_{\rm Dev1} - 2 \times ||V_{\rm Dev1} - V_{\rm Dev2}||$$
(15)

2.3 SVM分类器

SVM是机器学习领域中常用于二分类问题的 学习方法^[14]。使用LIBSVM工具箱完成相关分析, SVM算法模型构建的过程如图6所示,输入4种特

征参数,使用线性核函数作为SVM分类的函数。房 颤识别结果作为输出,1代表房颤,0代表非房颤。

Fig.6 Schematic diagram of the two classification of atrial fibrillation with support vector machine

2.4 BP神经网络

BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络^[15],本研究使用的BP神经网络为三层网络结构,从心电信号中提取的4种特征参数作为输入层,节点个数为4,识别结果作为输出层,房颤和非房颤的输出层节点为2,中间设置一层8个节点的隐含层。网络中所有神经元单元的激活函数均为"tansig"函数,BP神经网络结构如图7所示。

3 实验分析

3.1 分类实现

首先处理afdb数据库中25例病例数据,将其RR 间期分类为10、32、64、128个RR间期,分别提取 数据库中房颤的注解标签,得到112 773、35 251、 17 629、9 542个标签样本;然后从病例中提取出与 标签样本相同长度的特征参数样本,每组特征参数 样本包含4种特征参数作为分类器的输入,采用十 折交叉验证法和7:3留出法来测试分类方法。

3.2 SVM分类结果

SVM分类器的分类结果如表2所示,本方法对 32、64、128个RR间期分组的房颤分类准确率均达

到98%以上,而对10个RR间期房颤分类准确率在 92.09%,低于其他3种RR间期分类预测结果,与十 折交叉验证法结果相似。

表2 SVM分类测试集分类评估结果

Tab.2 Classification and evaluation results of SVM classification test set				
测试 方法	心搏数/ 个	灵敏度 (%)	特异性 (%)	准确率 (%)
7:3留	10	96.25	88.59	92.09
出法	32	98.25	97.87	98.04
	64	98.25	98.97	98.64
	128	98.12	99.25	98.73
十折	10	95.46 ± 1.53	89.02 ± 0.84	92.55 ± 1.23
交叉 验证法	32	97.60 ± 0.96	98.02 ± 0.88	$97.85 \!\pm\! 0.64$
	64	98.57 ± 0.25	$98.06 \!\pm\! 0.68$	98.36 ± 0.33
	128	97.41 ± 0.45	99.01 ± 0.27	98.35 ± 0.12

3.3 BP神经网络分类结果

将4种特征参数输入BP神经网络,其相对应的 分类结果如表3所示,用BP神经网络分类对于64、 128个RR间期分组的房颤分类准确率均达到98%以 上,与十折交叉验证法结果相似。

	表3	BP神	经网络测	试集	分类评	估结果	
1. 2	C1:C	41 - L - L - A		14	-fDD		- 4 4 -

1ab.3	Classification a	nd evaluation resi	ins of BP neural	network test set
测试 方法	心搏数/ 个	灵敏度 (%)	特异性 (%)	准确率 (%)
7:3留	10	95.06	89.46	92.02
出法	32	97.76	98.11	97.95
	64	98.17	98.97	98.60
	128	98.04	99.38	98.77
十折	10	95.87 ± 0.93	$89.00 \!\pm\! 0.85$	92.86 ± 0.98
交叉	32	97.24 ± 0.81	$98.31 \!\pm\! 0.83$	$97.78 \!\pm\! 0.67$
亚旺伍	64	98.87 ± 0.32	98.10 ± 0.73	98.47 ± 0.58
	128	97.76 ± 0.52	$99.22 \!\pm\! 0.34$	98.53 ± 0.41

4 讨论

将本研究所提算法性能与其他方法^[8,10,16-20]进行 对比,如表4所示。LIU等^[16]根据R波和RR间期均 值、标准差等17个RR间期相关特征来识别房颤,最 终准确率为86.37%;HUANG等^[10]和ADFALA等^[19]分 别只使用K-S检验和RR间期香农熵来判断是否有房 颤发生,最终结果验证了K-S检验和RR间期香农熵 对房颤的判别确实有效,但灵敏度和特异性均有待 提高;XIN等^[20]通过提取时频能量,利用小波分解 和小波多尺度熵提取特征,从而进行分类,得到了 92.18%的灵敏度和94.88%的特异性。在过去的研究

中,许多研究人员尝试使用基于房颤信号的时、频域 特征,结合机器学习的方法来识别房颤信号,然而, 他们只使用了一种或两种特征参数,偏差较大,造成 分类算法不稳定,产生漏判和误判,因此在保证灵敏 度的同时,不能保证特异性,或者出现灵敏度、特 异性和准确率均较低的情况。

表4 其他方法结果对比 Tab.4 Comparison of results of other methods

作者	方法	灵敏度 (%)	特异性 (%)
LIU等 ^[16]	RR间期均值、标准差等 +SVM	90.27	75.08
HUANG等 ^[10]	K-S检验	96.60	93.80
PARK等 ^[17]	Poincare散点图	91.40	92.90
MOHEBBI等 ^[18]	RR间期的功率谱密度的 峰值频率和RR间期频谱	94.00	97.00
XIN等 ^[20]	小波多尺度α熵	92.18	94.88
ADFALA等 ^[19]	RR间期的香农熵+人工神 经网络	85.31	84.82
DASH等 ^[8]	连续RR差值的均方根 值、时间序列转折点比率	90.20	91.20

本研究提出了一种将4种特征参数(洛伦兹值、 香农熵、K-S检验值和指数移动平均值)应用于不同 RR间期分段的房颤检测方法,且检测性能较好,获 得了较高的准确率,在保证了较高灵敏度的同时也保 证了较高的特异性,可以实现分析较短RR间期(10 个RR间期)和30个RR间期以上分段的房颤信号。

本研究主要局限于对现有数据库的分析,样本 量较少,这些数据库只能在一定程度上反映临床数 据的代表性,不具有普遍性。

5 结论

本研究提出了基于BP神经网络和SVM对提取 短心电片段信号特征参数分类的方法,在32、64、 128个RR间期分类预测结果达到了98%以上的分类 准确率,具有良好的房颤检测性能。而在10个RR 间期的分组上检测准确率相对较低,为提高10个 RR间期的房颤检测性能,在今后的研究中考虑加 入P波的检测以及考虑其他深度学习的方法,进一 步提升识别的准确率,同时进一步开展临床验证, 采集更多的临床房颤数据进行验证与算法的优化, 为房颤识别与治疗评价的应用奠定基础。

参考文献

[1] CROMIE N. Atrial fibrillation[J]. Ulster Med J, 2013,

82(3): 135-140.

- [2] HAGIWARA Y, FUJITA H, OH S L, et al. Computeraided diagnosis of atrial fibrillation based on ECG signals: a review[J]. Inform Sci, 2018, 467: 99-114.
- [3] KAUFMAN E S, WALDO A L. The impact of asymptomatic atrial fibrillation[J]. J Am Coll Cardiol, 2004, 43(1): 53-54.
- [4] JIE L, LIAN W, DIRK M. A simple method to detect atrial fibrillation using RR intervals[J]. Am J Cardiol, 2011, 107(10): 1494-1497.
- [5] 陈志博,李健,李智,等.基于RR间期和多特征值的房颤自动检测分类[J].生物医学工程学杂志,2018,35(4):550-556.
- [6] SARKAR S, RITSCHER D, MEHRA R. A detector for a chronic implantable atrial tachyarrhythmia monitor[J]. IEEE Trans Biomed Eng, 2008, 55(3): 1219-1224.
- [7] 冯冠宇. 心电图中房扑和房颤检测算法设计[D]. 南京: 东南大学, 2018.
- [8] DASH S, CHON K H, LU S, et al. Automatic real time detection of atrial fibrillation[J]. Ann Biomed Eng, 2009, 37(9): 1701-1709.
- [9] 黄超. 动态心电图中房颤自动检测算法研究及其临床 应用[D]. 杭州: 浙江大学, 2013.
- [10] HUANG C, YE S M, CHEN H, et al. A novel method for detection of the transition between atrial fibrillation and sinus rhythm[J]. IEEE Trans Biomed Eng, 2011, 58(4): 1113-1119.
- [11] TATENO K, GLASS L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ∆RR intervals[J]. Med Biol Eng Comput, 2001, 39(6): 664-671.
- [12] KORZINOV L N, LE D V. Portable ECG monitor and method for atrial fibrillation detection: US 6871089[P]. 2005-03-22.
- [13] 孟丹阳. 基于心电信号的房颤自动识别研究[D]. 天津: 天津理工大学, 2019.
- [14] CHAN Y, WALMSLEY R P. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups[J]. Phys Therapy, 1997, 77(12): 1755-1762.
- [15] GU Y, LIANG Z H, HAGIHIRA S. Use of multiple EEG features and artificial neural network to monitor the depth of anesthesia[J]. Sensors, 2019, 19(11): 2499.
- [16] LIU N, SUN M Y, WANG L D, et al. A support vector machine approach for AF classification from a short singlelead ECG recording[J]. Physiol Meas, 2018, 39(6): 064004.
- [17] PARK J, LEE S, JEON M. Atrial fibrillation detection by heart rate variability in Poincare plot[J]. Biomed Eng Online, 2009, 8(1): 38.
- [18] MOHEBBI M, GHASSEMIAN H. Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability[J]. Med Biol Eng Comput, 2014, 52(5): 415-427.
- [19] AFDALA A, NURYANI N, NUGROHO A S. Automatic detection of atrial fibrillation using basic Shannon entropy of RR Interval feature[C]//Journal of Physics: Conference Series. IOP Publishing, 2017, 795(1): 012038.
- [20] XIN Y, ZHAO Y Z. Paroxysmal atrial fibrillation recognition based on multi-scale wavelet α-entropy[J]. Biomed Eng Online, 2017, 16(1): 121.