Abstract:
In order to alleviate the conflict between medical supply and demand, and to improve the efficiency of medical image transmission, this study proposes an intelligent method for large-volume medical image transmission. This method extracts and generates keyword pairs by analyzing medical diagnostic reports, and uses a 3D-UNet to segment original image data into various sub-area based on its anatomy structure. Then, the sub-areas are scored through keyword pairs and preset scoring criteria, and transmitted to user frontend in the order of prioritization score. Experiments show that this method can fulfill physicians′ requirements of radiology reading and diagnosis with only ten percent of data transmitted, which efficiently optimized traditional transmission procedures.