Abstract:
In order to effectively prevent the damage to the human body caused by abnormal oxygen concentration in the medical hyperbaric oxygen chamber, a ZigBee-based medical hyperbaric oxygen chamber oxygen concentration automatic control system is designed. The data acquisition module uses the microprocessor STM32F103C8T6 to receive the oxygen concentration data of each acquisition point, and the ZigBee of the data processing module transmits the processing results to the MSP430G2553 single-chip microcomputer at the receiving end of the slave. The MSP430G2553 single-chip microcomputer uses a self-organizing TS fuzzy neural network (SOTSFNN) and adds activation. The intensity concept realizes automatic control of the oxygen concentration in the hyperbaric oxygen chamber, and controls the buzzer to give an alarm when the oxygen concentration is lower than 19 mg/L and higher than 23 mg/L, and displays the current real-time oxygen concentration through LCD12864. The experimental results show that as the communication distance increases, the packet loss rate of the system is always lower than 5%, and the signal strength under the same communication distance is better; the system can effectively control the oxygen concentration value within the set range, and the oxygen concentration. The control accuracy is high and the stability is good.