Application of Virtual Monochromatic Images Reconstructed by Dual-energy Computed Tomography in Radiotherapy Treatment Planning System
-
摘要: 双能CT(dual-energy CT,DECT)扫描后重建的虚拟单能量图像(virtual monochromatic images,VMI)在放疗中有极大的应用前景,目前尚缺乏临床剂量验证。该研究使用GE Revolution CT扫描仪对仿真头模和体模进行常规成像和双能的宝石能谱成像(gemstone spectral imaging,GSI),将常规图像和多组VMI导入治疗计划系统(treatment planning system,TPS)中,通过移植相同的放疗计划对比CT值和剂量分布。结果表明,VMI均可导入TPS中进行CT值-相对电子密度转换和剂量计算,且70~140 keV的单能量图像与常规CT图像的6 MV光子计划剂量分布差异较小。Abstract: Virtual monochromatic images (VMI) that reconstructed on dual-energy computed tomography (DECT) have further application prospects in radiotherapy, and there is still a lack of clinical dose verification. In this study, GE Revolution CT scanner was used to perform conventional imaging and gemstone spectral imaging on the simulated head and body phantom. The CT images were imported to radiotherapy treatment planning system (TPS), and the same treatment plans were transplanted to compare the CT value and the dose distribution. The results show that the VMI can be imported into TPS for CT value-relative electron density conversion and dose calculation. Compared to conventional images, the VMI varies from 70 to 140 keV, has little difference in dose distribution of 6 MV photon treatment plan.
-
Keywords:
- dual-energy CT /
- virtual monochromatic images /
- radiotherapy /
- dose distribution
-
-
[1] GOO H W, GOO J M. Dual-energy CT:New horizon in medical imaging[J]. Korean J Radiol, 2017, 18(4):555-569.
[2] JACOBSEN M C, SCHELLINGERHOUT D, WOOD C A, et al. Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation:A phantom study[J]. Radiology, 2018, 287(1):224-234.
[3] SKAARUP M, EDMUND J M, DORN S, et al. Dual-energy material decomposition for cone-beam computed tomography in image-guided radiotherapy[J]. Acta Oncol, 2019, 58(10):1483-1488.
[4] WANG T Y, ISHIHARA T, KONO A, et al. Application of dual-energy CT to suppression of metal artefact caused by pedicle screw fixation in radiotherapy:A feasibility study using original phantom[J]. Phys Med Biol, 2017, 62(15):6226-6245.
[5] DI MASO L D, HUANG J, BASSETTI M F, et al. Investigating a novel split-filter dual-energy CT technique for improving pancreas tumor visibility for radiation therapy[J]. J Appl Clin Med Phys, 2018, 19(5):676-683.
[6] LENGA L, CZWIKLA R, WICHMANN J L, et al. Dual-energy CT in patients with colorectal cancer:Improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging[J]. Eur J Radiol, 2018, 106:184-191.
[7] LENGA L, CZWIKLA R, WICHMANN J L, et al. Dual-energy CT in patients with abdominal malignant lymphoma:impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality[J]. Clin Radiol, 2018, 73(9):833.e19-e27.
[8] ROELE E D, TIMMER V C M L, VAASSEN L A A, et al. Dual-energy CT in head and neck imaging[J]. Curr Radiol Rep, 2017, 5(5):19.
[9] VAN DER HEYDEN B, WOHLFAHRT P, EEKERS D B P, et al. Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach[J]. Sci Rep, 2019, 9(1):4126.
[10] VAN ELMPT W, LANDRY G, DAS M, et al. Dual energy CT in radiotherapy:Current applications and future outlook[J]. Radiother Oncol, 2016, 119(1):137-144.
[11] HUANG J Y, FOLLOWILL D S, HOWELL R M, et al. Approaches to reducing photon dose calculation errors near metal implants[J]. Med Phys, 2016, 43(9):5117.
[12] TSUKIHARA M, NOTO Y, HAYAKAWA T, et al. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship:An experimental verification using a clinical dual-source CT scanner[J]. Phys Med Biol, 2013, 58(9):N135-N144.
[13] LANDRY G, RENIERS B, GRANTON P V, et al. Extracting atomic numbers and electron densities from a dual source dual energy CT scanner:Experiments and a simulation model[J]. Radiother Oncol, 2011, 100(3):375-379.
[14] SAITO M. Technical note:Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging[J]. Med Phys, 2015, 42(7):4088-4093.
[15] GAUNTT D M. A suggested method for setting up GSI profiles on the GE Revolution CT scanner[J]. J Appl Clin Med Phys, 2019, 20(12):169-179.
[16] 蒋晓芹, 柏森, 钟仁明, 等. IGRT锥形束CT图像的CT值与物理密度关系的研究[J]. 中华放射肿瘤学杂志, 2007, 16(5):372-376. [17] ANNKAH J K, ROSENBERG I, HINDOCHA N, et al. Assessment of the dosimetric accuracies of CATPhan 504 and CIRS 062 using kV-CBCT for performing direct calculations[J]. J Med Phys, 2014, 39(3):133-141.
[18] 吴魁, 李光俊, 柏森. 基于锥形束CT图像采用XVMC剂量算法时射束能量的影响[J]. 生物医学工程学杂志, 2012, 29(3):449-452. [19] SHIRAISHI S, MOORE K L. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy[J]. Med phys, 2016, 43(1):378-387.
[20] SAITO M, KADOYA N, SATO K, et al. Comparison of DVH-based plan verification methods for VMAT:ArcCHECK-3DVH system and dynalog-based dose reconstruction[J]. J Appl Clin Med Phys, 2017, 18(4):206-214.
[21] HAGHIGHI R R, CHATTERJEE S, VYAS A, et al. X-ray attenuation coefficient of mixtures:Inputs for dual-energy CT[J]. Med Phys, 2011, 38(10):5270-5279.
计量
- 文章访问数: 42
- HTML全文浏览量: 0
- PDF下载量: 9