无线健康监护系统设计及状态识别算法

      Design of Wearable Wireless Health Monitoring System and Status Recognition Algorithm

      • 摘要: 该研究提出了一种面向强制戒毒所戒毒人员的穿戴式无线健康监护系统。该系统可以连续实时地监测戒毒人员的多项生理参数,当生理参数出现异常发出预警信息,起到及时行医的作用。此外,提出了一种卷积神经网络模型(convolutional neural network,CNN),该模型根据多项生理参数对戒毒人员的健康状态进行评估。实验表明,将该模型用于公开的生理参数数据集的身体状态识别任务,在单个实验对象的生理参数数据集上最高可达100%的识别准确率;当使用整个生理参数数据集时可获得高达99.1%的识别准确率,超过了传统的模式识别方法在此任务上的表现,验证了该模型的优越性。

         

        Abstract: A wearable wireless health monitoring system for drug addicts in compulsory rehabilitation centers was proposed. The system can continuously monitor multiple physiological parameters of drug addicts in real time, and issue early warning information when abnormal physiological parameters occur, so as to play the role of timely medical practice. In addition, this study proposes a convolutional neural network (CNN)model, which can evaluate the health status of drug addicts based on multiple physiological parameters. Experiments show that the model can be applied to the task of body state recognition in the open physiological parameter data set, and the recognition accuracy can reach up to 100% in a single physiological parameter data set; when the whole physiological data set is used, the recognition accuracy can reach 99.1%. The recognition accuracy exceeds the performance of the traditional pattern recognition method on this task, which verifies the superiority of the model.

         

      /

      返回文章
      返回