基于稀疏连接残差网络的心脏传导阻滞精确定位的自动识别

      Automatic Identifcation of Heart Block Precise Location Based on Sparse Connection Residual Network

      • 摘要: 目的 实现对右束支阻滞、左束支阻滞和正常心电信号进行自动分类。方法 以MTI-BIH数据库为实验数据来源,从中提取训练集和测试集数据用于训练和测试网络模型,基于卷积神经网络提出核心算法:稀疏连接残差网络。将稀疏连接残差网络与已有的经典网络模型进行对比,以评估模型的识别效果。结果 稀疏连接残差网络的测试集准确率为95.2%,识别结果优于经典网络模型。结论 该文提出的算法能够辅助医生进行心脏传导阻滞类疾病的诊断,有一定的临床应用价值。

         

        Abstract: Objective To classify Right Bundle Branch Block (RBBB),Left Bundle Branch Block (LBBB) and normal ECG signals automatically.Methods The MIT-BIH database was used as experimental data sources.The training set and test set were extracted for training and testing network models.Based on convolutional neural network,this paper proposed the core algorithm:sparse connection residual network.Compared the sparse connected residual network with classic network models,then evaluated the recognition effect of the model.Results The accuracy of the test set the MIT-BIH database was 95.2%,the result is better than classic network models.Conclusion The algorithm proposed in this paper can assist doctors in the diagnosis of heart block related disease and place a high value on clinical application.

         

      /

      返回文章
      返回