• Medline、Scopus、DOAJ收录
  • 中国科技核心期刊

基于稀疏连接残差网络的心脏传导阻滞精确定位的自动识别

齐继, 张瑞卿, 沈阳, 常世杰, 沙宪政

齐继, 张瑞卿, 沈阳, 常世杰, 沙宪政. 基于稀疏连接残差网络的心脏传导阻滞精确定位的自动识别[J]. 中国医疗器械杂志, 2019, 43(2): 86-89. DOI: 10.3969/j.issn.1671-7104.2019.02.003
引用本文: 齐继, 张瑞卿, 沈阳, 常世杰, 沙宪政. 基于稀疏连接残差网络的心脏传导阻滞精确定位的自动识别[J]. 中国医疗器械杂志, 2019, 43(2): 86-89. DOI: 10.3969/j.issn.1671-7104.2019.02.003
QI Ji, ZHANG Ruiqing, SHEN Yang, CHANG Shijie, SHA Xiangzheng. Automatic Identifcation of Heart Block Precise Location Based on Sparse Connection Residual Network[J]. Chinese Journal of Medical Instrumentation, 2019, 43(2): 86-89. DOI: 10.3969/j.issn.1671-7104.2019.02.003
Citation: QI Ji, ZHANG Ruiqing, SHEN Yang, CHANG Shijie, SHA Xiangzheng. Automatic Identifcation of Heart Block Precise Location Based on Sparse Connection Residual Network[J]. Chinese Journal of Medical Instrumentation, 2019, 43(2): 86-89. DOI: 10.3969/j.issn.1671-7104.2019.02.003

基于稀疏连接残差网络的心脏传导阻滞精确定位的自动识别

基金项目: 

辽宁省教育厅科学研究一般项目(L2015563)

辽宁省创新创业教育改革试点专业(2016年12号)

详细信息
    通讯作者:

    常世杰,E-mail:121161415@qq.com

    沙宪政,E-mail:xzsha@mail.cmu.edu.cn

  • 中图分类号: R318.04

Automatic Identifcation of Heart Block Precise Location Based on Sparse Connection Residual Network

  • 摘要: 目的 实现对右束支阻滞、左束支阻滞和正常心电信号进行自动分类。方法 以MTI-BIH数据库为实验数据来源,从中提取训练集和测试集数据用于训练和测试网络模型,基于卷积神经网络提出核心算法:稀疏连接残差网络。将稀疏连接残差网络与已有的经典网络模型进行对比,以评估模型的识别效果。结果 稀疏连接残差网络的测试集准确率为95.2%,识别结果优于经典网络模型。结论 该文提出的算法能够辅助医生进行心脏传导阻滞类疾病的诊断,有一定的临床应用价值。
    Abstract: Objective To classify Right Bundle Branch Block (RBBB),Left Bundle Branch Block (LBBB) and normal ECG signals automatically.Methods The MIT-BIH database was used as experimental data sources.The training set and test set were extracted for training and testing network models.Based on convolutional neural network,this paper proposed the core algorithm:sparse connection residual network.Compared the sparse connected residual network with classic network models,then evaluated the recognition effect of the model.Results The accuracy of the test set the MIT-BIH database was 95.2%,the result is better than classic network models.Conclusion The algorithm proposed in this paper can assist doctors in the diagnosis of heart block related disease and place a high value on clinical application.
  • [1] 钟杭美. 临床12导联同步静态心电图[M]. 北京:中国医药科技出版社, 2013.
    [2] 王龙. 心脏房室传导阻滞的分类与心电图表现[J]. 中华全科医师杂志, 2009, 8(6):429-430.
    [3] 邓勇, 施文康, 刘琪. 小波变换的信号分形分析及其在心电信号处理中的应用研究[J]. 物理学报, 2002, 51(4):759-762.
    [4]

    KIRANYAZ S, INCE T, GABBOUJ M. Real-Time Patient-Specific ECG Classification by 1D Convolutional Neural Networks.[J]. IEEE Trans Biomed Eng, 2016, 63(3):664.

    [5]

    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86(11):2278-2324.

    [6]

    RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks[J]. arXiv preprint arXiv:1707.01836, 2017.

    [7]

    ISIN A, OZDALILI S. Cardiac arrhythmia detection using deep learning[J]. Proc Comput Sci, 2017, 120:268-275.

    [8]

    ROBINSON A J. An application of recurrent nets to phone probability estimation[J]. IEEE T Neural Network, 1994, 5(2):298-305.

    [9]

    HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neur Comput, 2006, 18(7):1527-1554.

    [10]

    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Comput, 1997, 9(8):1735-1780.

    [11]

    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. International Conference on Neural Information Processing Systems. MIT Press, 2014:2672-2680.

    [12]

    NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C].Proceedings of the 27th international conference on machine learning (ICML-10). Haifa, 2010:807-814.

    [13]

    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014:1-9.

    [14]

    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Comput Sci, 2014.

    [15]

    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition. IEEE, 2015:770-778.

    [16]

    Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, USA, 2012:1097-1105.

    [17]

    IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]. Proc 32nd Int Conf Mach Learn, 2015, 37:448-456.

计量
  • 文章访问数:  13
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 网络出版日期:  2024-02-19
  • 刊出日期:  2019-03-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭