基于深度学习的冠脉支架需求预测研究

      Research on Prediction of Coronary Stent Demand Based on Deep Learning

      • 摘要:
        目的 该研究旨在基于不同深度学习模型对冠脉支架需求进行预测,进而达到优化冠脉支架供应方案,提高供应与使用效率的目的。
        方法 选取2022年1月至2024年8月某大型三甲医院冠脉支架集中带量采购数据,使用3种深度学习模型对供应量进行预测,根据MSE曲线评价模型学习效果,并通过不同评价指标验证数据集的预测结果并评估预测误差。
        结果 MSE曲线表明,Transformer模型在该任务中表现出了最强的特征提取和模式识别能力,同时预测供应量评价指标体系验证了基于Transformer模型的预测结果接近实际值。
        结论 该研究通过建立基于深度学习的冠脉支架供应模型,较好地预测了冠脉支架需求,为优化医院备货计划提供了参考,从而保障冠脉支架的使用及供应。

         

        Abstract:
        Objective This study aims to predict the demand for coronary stents based on different deep learning models, in order to optimize the supply plan of coronary stents and improve the efficiency of supply and use.
        Method Select the centralized procurement data of coronary stents in a large tertiary hospital from January 2022 to August 2024, use three deep learning models to predict the supply, evaluate the learning effect of the model based on the MSE curve, and verify the prediction results of the dataset through different evaluation indicators and evaluate the prediction error.
        Result The MSE curve indicates that the Transformer model exhibits the strongest feature extraction and pattern recognition capabilities in this task, and the predicted supply evaluation index system verifies that the prediction results based on the Transformer model are close to the actual values.
        Conclusion This study established a deep learning based coronary stent supply model, which effectively predicted the demand for coronary stents and provided reference for optimizing hospital stocking plans, thereby ensuring the use and supply of coronary stents.

         

      /

      返回文章
      返回