基于故障树和模糊贝叶斯网络的医疗设备失效诊断分析

      Failure Diagnosis Analysis of Medical Equipment Based on Fault Tree and Fuzzy Bayesian Network.

      • 摘要:
        目的 为提高医疗设备可靠性,建立设备失效致因诊断模型,为医疗设备的高效使用提供合理化建议。
        方法 结合故障树分析(fault tree analysis, FTA)归纳得到使设备失效的底事件并计算其先验概率,通过专家评估的方法获得各节点的条件概率表,将三角模糊数理论与贝叶斯网络(Bayesian networks, BN)相结合构建模糊贝叶斯网络(fuzzy Bayesian network, FBN),进行模型的后验概率推理与敏感性分析。
        结果 以内镜为对象,实例分析表明:模型精准计算出内镜失效概率为0.385%,并识别出关键致因:清洗操作不当(X5,后验概率0.36064)、故障发现不及时(X8,后验概率0.23571)、转运不规范(X6,后验概率0.11344)及自然老化(X10,后验概率0.11377),敏感性分析进一步验证了其影响权重(互信息值分别为0.007490.005910.002020.00174)。
        结论 该模型能准确地对医疗设备失效进行定量分析及快速故障定位,并以此为依据制定防范措施。

         

        Abstract:
        Objective To enhance the reliability of medical equipment, this study aims to develop a failure cause diagnosis model and provide rational suggestions for efficient equipment use.
        Methods Combine fault tree analysis (FTA) to identify basic events causing equipment failure and calculate their prior probabilities. Obtain conditional probability tables for each node through expert assessment. Integrate triangular fuzzy number theory with Bayesian networks (BN) to construct a fuzzy Bayesian network (FBN) for posterior probability inference and sensitivity analysis.
        Results Using endoscopes as the subject, the analysis shows that the model accurately calculates the endoscope failure probability at 0.385%, and identifies the key causes: improper cleaning (X5, posterior probability 0.36064), untimely fault detection (X8, posterior probability 0.23571), irregular transportation (X6, posterior probability 0.11344), and natural aging (X10, posterior probability 0.11377). Sensitivity analysis also confirms their influence weights (mutual information values are 0.00749, 0.00591, 0.00202, 0.00174 ).
        Conclusion The model can accurately perform quantitative analysis and rapid fault location of medical equipment failures, enabling effective preventive measures.

         

      /

      返回文章
      返回