一种医学图像结构报告系统的实现与应用评价

      Implementation and Application Evaluation of a Medical Image Structure Reporting System

      • 摘要:
        目的 为落实影像诊断指南,提升影像报告同质化与标准化水平,研究开发了一套多模态结构化报告系统。
        方法 采用“标准编码+结构项+关键图像”整合策略,定制不同疾病或部位的报告模板,涵盖文本报告与综合图文报告。通过横向对比传统报告,从效率、可接受性、疾病征象表达完整性和数据分类准确性四方面评估差异。
        结果 综合图文结构化报告质量显著优于传统报告(P<0.01),而文本结构化报告与传统报告差异无统计学意义(P>0.01)。图文报告的信息完整性与诊断指南依从性显著高于传统报告及文本结构化报告。资深放射科医师(4.04±0.55)与临床医师(4.19±0.58)对图文报告的接受度高于初级医师(3.04±1.55)。在数据分类准确性方面,基于自然语言处理(Natural Language Processing, NLP)的结构化报告检索准确度(F1-Score: 0.85~1.00)显著优于传统报告的关键词检索方法。
        结论 图文融合的结构化报告能有效解决常规报告异质性问题,有助于提升基层放射科医师诊断能力。

         

        Abstract:
        Objective To implement imaging diagnostic guidelines and enhance report standardization, we developed a multimodal structured reporting system.
        Methods The system integrated "standard coding + structured items + key images" with disease-specific templates, generating text-only and image-text-based reports. A comparative analysis against traditional reports evaluated efficiency, acceptability, completeness of disease feature expression, and data classification accuracy.
        Results Image-text-based reports showed significantly higher quality than traditional reports (P<0.01), while text-only reports had no significant difference (P>0.01). Image-text-based reports also surpassed both traditional and text-only reports in information completeness and guideline adherence. Senior radiologists (4.04±0.55) and clinicians (4.19±0.58) reported higher acceptance than junior radiologists (3.04±1.55). For data classification, NLP-based retrieval achieved superior accuracy (F1-Score:0.85~1.00) over keyword-based methods.
        Conclusion Image-text-integrated structured reporting reduces heterogeneity in conventional reports and aids competency development among junior radiologists in primary care.

         

      /

      返回文章
      返回