基于直方图均衡残差网络(PE-ResNet)的肠息肉分割研究

      Intestinal Endoscopic Polyp Segmentation based on Histogram Equalization ResNet (PE-ResNet)

      • 摘要: 结肠镜检是结直肠癌早期病变筛查的重要技术手段,肠息肉的准确分割有助于提高筛查准确性。早期病变的筛查对于预防肠癌具有重要意义,肠息肉分割是其中的重要研究方向。虽然基于深度学习的肠息肉分割已取得良好的结果,但肠镜图像的色彩差异仍是影响分割性能的主要因素之一。该文在ResNet网络的基础上,提出一种基于直方图均衡的改进型网络PE-ResNet,用于解决肠息肉分割中的色彩差异问题。在ClinicDB等5个公开息肉分割数据上的实验结果表明,PE-ResNet对于肠息肉分割任务,能够提升性能。

         

        Abstract: The early screening of lesions is of great significance for the prevention of colorectal cancer, where the polyp segmentation is essential to it. Although the deep-learning based polyp segmentation has gained acceptable performance, the color difference between intestinal endoscopic images affects it much. Based on ResNet architecture, this study proposes an advanced PE-ResNet where the histogram equalization is used to decrease color influence. Experimental results on 5 datasets including ClinicDB demonstrate that the PE-ResNet achieves improvement in intestinal polyp segmentation.

         

      /

      返回文章
      返回