基于直方图均衡残差网络(PE-ResNet)的肠息肉分割研究

      Intestinal Polyp Segmentation Based on Histogram Equalization ResNet (PE-ResNet)

      • 摘要: 结肠镜检查是结直肠癌早期病变筛查的重要技术手段,肠息肉的准确分割有助于提高筛查的准确性。早期病变的筛查对于预防肠癌具有重要意义,而肠息肉分割是其中的一个重要研究方向。虽然基于深度学习的肠息肉分割已取得良好的结果,但肠镜图像的色彩差异仍是影响分割性能的主要因素之一。在ResNet网络的基础上,提出一种基于直方图均衡的改进型网络PE-ResNet,用于解决肠息肉分割中的色彩差异问题。在ClinicDB等5个公开的息肉分割数据集上的实验结果表明,PE-ResNet在肠息肉分割任务中,能够提升性能。

         

        Abstract: Colonoscopy is an important technical means for screening early colorectal cancer lesions. Accurate segmentation of intestinal polyps helps improve the accuracy of screening. Early screening for lesions is of great significance for the prevention of colorectal cancer, and the segmentation of intestinal polyps is an important research direction. Although intestinal polyp segmentation based on deep learning has achieved acceptable performance, the color variation among intestinal endoscopic images significantly affects it. Based on the ResNet architecture, this study proposes an advanced PE-ResNet in which histogram equalization is used to reduce color influence. Experimental results on five datasets, including ClinicDB, demonstrate that the PE-ResNet model achieves improved performance in intestinal polyp segmentation.

         

      /

      返回文章
      返回