Abstract:
Objective To introduce a locating device for the entry point of intramedullary nail based on the inertial navigation technology, which utilizes multi-dimensional angle information to assist in rapid and accurate positioning of the ideal direction of femoral anterograde intramedullary nails' entry point, and to verify its clinical value through clinical tests.
Methods After matching the locating module with the developing board, which are the two components of the locating device, they were placed on the skin surface of the proximal femur of the affected side. Anteroposterior fluoroscopy was performed. The developing angle corresponding to the ideal direction of entry point was selected based on the X-ray image, and then the yaw angle of the locating module was reset to zero. After resetting, the locating module was combined with the surgical instrument to guide the insertion angle of the guide wire. The ideal direction of entry point was accurately located based on the angle guidance. By setting up an experimental group and a control group for clinical surgical operations, the number of guide wire insertion times, surgical time, fluoroscopy frequency, and intraoperative blood loss with or without the locating device was recorded.
Results Compared to the control group, the experimental group showed significant improvement in the number of guide wire insertion times, surgical time, fluoroscopy frequency, and intraoperative blood loss, with a statistically significant difference (P<0.01).
Conclusion The locating device can assist doctors in quickly locating the entry point of intramedullary nail, effectively reducing the fluoroscopy frequency and surgical time by improving the success rate of the guide wire insertion with one shot, improving surgical efficiency, and possessing certain clinical value.